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Duality relations for elastic constants of the classical Gaussian core model
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The many-body Gaussian core model involves a potential energy function that consists of a sum of repelling
pair interactions, each of which is a simple Gaussian function of distance. This paper examines the linear
elastic response of the model for its stable lattices at absolute zero temperafireljr2, and 3 dimensions.
Owing to the fact that the Gaussian function is self-similar under Fourier transformation, exact relations exist
connecting each elastic constant at number depstty a partner at dual densigy’ in the reciprocal lattice,
wherepp’=7"P. By using these identities, it has been possible to show that shear elastic constants in
=2 and 3 tend strongly to zero in the asymptotic high density limit.
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[. INTRODUCTION The objective of the present paper is to explore extensions
of the above duality relation to include uniformly strained
The classical Gaussian core mod€ICM) consists of a versions of the ground-state crystals. The focus remains on
set ofN identical structureless particles subject to the follow-the zero temperature limit for the GCM, and strains will be
ing interaction potential: limited to infinitesimal values. Consequently the results con-
cern linear elastic response. Section Il provides the necessary
o(r, rN):Z exp—r2) (1.1) background and definitions for the generalization to be ex-
=i e ' ploited. Section Il concentrates on tle=2 case, the elas-
tically distorted triangular lattice. Section IV analyzes the
Here we have chosen to use the height and range of the paiy=3 case, for which elastic constants of the low-density
Gaussians as natural energy and length units,rgneepre-  face-centered cubic crystal are linked to the elastic constants
sents the scalar distance between partickesdj. Part of the  of the high-density body-centered cubic crystal. Finally, Sec.
scientific motivation for considering this model is that it pro- v contains some remarks about connections to other aspects
vides a simple representation for the effective interaction opef the GCM, including its phonon spectra.
erating between polymer coils or flexible dendrimers sus-
pended in suitable solvenf§—4]. However, the GCM also Il. PRELIMINARIES
exhibits some unusual mathematical properf{igs 8] that
generate additional interest, which consequently warrants ex- The most basic elastic response is that produced by iso-
amination of the model in a broad analytical context, includ-tropic (hydrostatig stress. It can be described in the present
ing variable space dimensid. context simply by the inverse of the zero-temperature com-
The ground-statezero temperatujestructures for the pressibility x(p). A connection between low and high density
GCM are relatively simple, in which all particles are equiva-behaviors of this quantity, and of the zero-temperature pres-
lent. For the linear cas® =1, it is the elementary periodic surep, for the GCM's can readily be inferred from the el-
array. In the planar versiol =2, the ground-state structure €mentary duality relatiori1.2) above. These quantities are
is the six-coordinate triangular lattice at all densities. Twoconnected to the lattice energl(p) by the relations
distinct structures appear b=3; at low density the face-

_ 2
centered cubic crystal predominates, while at high density p(p)=pTdd(p)/dp],

the body-centered cubic form takes oJer5,7,8. These B

classical ground states have lattice energies that satisfy dual- Uk(p)=pldp(p)/dp]. 20

ity relations which link pairs of low and high densities. Spe-
cifically, let ¢(p) denote the lattice energy per Gaussian par
ticle in any one of these cases, wheris the number density.
Then it has been demonstrated tha8]

p YA1+2¢(p)]=(p") M1+28(p")], (1.2

By applying density derivatives to E@L.2), while account-
ing for the dual-density definition Eq1.3), and finally rear-
ranging the results, one finds

p(p")=m"P2(2p*) T [1+2¢(p)]1-p °p(p)}
2.2

wherep’ is a density dual te satisfying and
r_— . —D
ppi=m . 3 [k(p")] t=m2P2p =214 2¢(p)]~4p *p(p)
In particular, Eq.(1.2) connects the lattice energies of the +[p3k(p)]7Y}. (2.3

face-centered and body-centered cubic structure®fer3,
and establishes that these energies are equal at the self-dd&lese relations offer the benefit of ready evaluatiompfand
density 3. « 1 at high density at which many neighbor particles inter-

1063-651X/2002/6@)/06612%6)/$20.00 66 066125-1 ©2002 The American Physical Society



FRANK H. STILLINGER PHYSICAL REVIEW E66, 066125 (2002

act, in terms of the low density properties that enjoy thelsotropic strain now involves the first two of these, which are

simplification of weak near-neighbor interactions only. then found to have the following relation to the pressure and
Before application of a homogeneous linear strain fieldcompressibility of the lattice:

the zero-temperature GCM lattice will present a state of iso- )

tropic stress, characterized by its pressur&he strain sub- 2N ood P) T Nyl p) =3/[2k(p)]  (D=3). (2.9

sequently causes the initial lattice ene@y to rise to the

higher valued [9]: Section IV below examines two types of anisotropic strains

that, in addition to this last result, offer separate expressions
for all three cubic-symmetry elastic constants.
—®.={—plu. U —u? . . .
® = Do={—pluj +(1/2)(ujiuj; — Uij)] The high-density behaviors of EgR.5), (2.7), and(2.9)
+(LI2) N Ui U 12, (2.4 depend upon that of the compressibility function. It is
e straightforward to show from Eq$1.2) and(2.1) that

with neglect of terms with cubic and higher orders in the Uk(p)~7PP2p2  (p—ce). (2.10
strain components. Her@ is the unstrained system content
(length, area, or volumethe u;; are elements of the sym-
metric strain tensor in a Cartesian coordinate system, and the Ill. TRIANGULAR LATTICE, D=2
Aija are elements of the corresponding fourth-order elastic one elastic constank,,,, remains to be examined for
tensor[9]. The Einstein summation convention applies tohe triangular lattice. For this purpose, the system will be
terms with repeated subscripts. ~ subjected to a uniform area-preserving strain that stretches
For D=1 the strain and elastic tensors have only singlee Jattice along one direction, while compressing it along
elementsi,, andA . Furthermore, it is easily shown for he perpendicular direction. Particle positions in the strained

this simple case that configuration are determined by integer multiples of two ba-
sis vectord, (&) andb,(e),
N p)=1k(p) (D=1). (2.5
ri(e)=ny(j)bs(e)+ny(j)ba(e). (3.9

As a result, the earlier Eq2.3) permits this singleD=1
elastic constant at high density to be evaluated in terms
guantities at the dual low density.

Here & is a measure of the imposed strain. Specifically, we
0 : X
choose the basis vectors to be the following:

On account of its symmetr¢hexagongl the triangular by(s)=a(l+s)u

ground state crystal for the GCM in two dimensions has its ! X
elastic energy terms in EqR.4) reduced to inclusion of only (1+8) 312
two distinct elastic constan{9]: b,(e)=a > u,+ 21+ e) Uy |, (3.2

1 2 . . . . .

2 Nijki Uij Uk — 2N g (Ut Uyy) T+ Mg wherea is the nearest-neighbor separation in the unstrained

lattice,
X[ (Ugx—Uyy) 2+ 4U2 1. (2.6) :
a(p)=[2/(3"%p)]", (3.3

Isotropic compression or expansion involves only the first of
the two surviving elastic terms. By comparing that first termand whereu, and u, are unit vectors along th& andy
to the directly-computed work of compression or expansiondirections, respectively. Notice that the choi@?2) orients

one finds the two-dimensional analog of Eg.5): the lattice, regardless of strain, so that one of its principal
directions(lines of particleg is parallel to thex axis.
Nepen(p)=1[4x(p)] (D=2). 2.7 The strain tensor corresponding to the basis ved®3

has the elements

Once again, this connection, and the prior E}3), permit
evaluation of this elastic quantity at high density in terms of
the dual low-density quantities. Computation of the second U= —s+0(s?) (3.4)
elastic constant in Eq2.6) forms the subject of the next Sec. v ' '
.

In the case of the cubic latticéfcc and bcg that provide

the ground-state structures in three dimensions, the elastgquations(2.4) and (2.6) then assign the following expres-
energy adopts a form with three independent elastic consjon to the energy rise due to strain:

stants[9]:
[P(e) = Dol/IN=(p,e)— ¢(p,0)
2

Niji Ui Ui = 3 Nsooo Ui Uy UZ) F Ny Uy =4\ gepy(p)e2p+0(s3). (35

2 2 2
+ + + +ul,+ . . . L
Uodlzz7+ UyyUz2) T2y Uiy F Usp Uy ) Present interest focuses on the leading term describing linear
(2.9 elastic response, but it should be noted in passing that sub-

Uyx=¢€,

Uyy=0.
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sequent terms with odd orders incan arise in principle, p'=(m%p) L, (3.19
because nonzero strainsand —¢ are not equivalent.

By formally including a self-interaction terng(p, &) may  the density that is dual tp, Eq. (1.3). Furthermore, the res-
be expressed simply as the integral of the product of thealed reciprocal lattice generated by basis vect8rs3 is
Gaussian interaction and the periodic lattice density functioritself a triangular lattice subject to homogeneous strain, with

(1) r :
prre) U= —&+0(s2),

1+2¢(p,s)=f exp—r2)pH(re)dr, (3.6 U=, (3.19

2 Uyy=0.

(1) = — —

pr(re)= o[r—niby(e) —nzby(e)]. (3.7 _ o

ny.ny t 22 In spite of the fact that the strain direction has been rotated
o N . by =/2 compared to that initially imposed on the starting

Because it is periodigy*™’ can alternatively be expressed as |attice, Eq.(3.4), the linear elastic response is similar. As a

a Fourier sunafter representing delta functions in 8.7 result, within the linear response regime 212 is equiva-

temporarily as narrow normalized Gaussians lent to
=1/ — (AU ’
P(l)(r,e):p lim 2 eXF{iK(S)-I‘—Kz(S)/(4a{)]. p 2[1+2¢(p18)]_(P ) 2[1+2¢(P &)1,
o K(e) (3.1
(3.8

a straightforward extension of the original duality relation

The sum in this last expression spans the lattice that is recigl-2- Equation(3.5) above allows this last expression to be
rocal to that generated Hy () andb,(s): recast in terms of the elastic constants at the dual densities:

K(s)=myKy(s)+moKa(s). (3.9 PN eenn(P)= (") N geyy(p"). (317

Equation (3.17 of course reduces to a triviality at the
self-dual densityr . However, it produces a nontrivial in-
sight when one of the densities, sayis very low, and its
dual p’ is very high. In that circumstance, the shear elastic
Ki(e)-bj(e) =275 . (3.10  constant\,,(p) will be determined solely be the weak

Gaussian tail of widely separated nearest neighbors in the

One readily finds sparse triangular lattice, and consequently will vanish expo-
nentially asp— 0. A straightforward calculation shows that

Here m; and m, cover positive and negative integers, and
zero, andK ;(e) and K,(g) are the basis vectors for that
reciprocal lattice, and therefore satisfy the relatiph@]

4 312 1+e in this low-density limit
Ki(e)= 2 [ 21 Uy — — Uy |,
3V2% (1+e) L X
Mm(P%(;—fﬂl’z exp{—m} (p—0). (3.18
4
KZ(S):(Sl’Za (1+e)uy. (3.11) By subsequently applying the duality relati@8.17), one

finds that in the high-density asymptotic regime
Upon substituting expressia(3.8) for p(*) into the right

) 2772‘0!
member of Eq(3.6), one finds )\gg,m(p’)~(7-rp’)3(772p’ —31’2)exp{ -5 }
1+2¢(p,e)=mp lim K;) exf] — (1+ Ua)K2(e)/4] (p' ), (3.19
a—x® &
implying a remarkable mechanical weakness of the triangu-
=mp >, exp{—[mK;(e)+myK,(e)]?/4}. lar lattice under high compression. On account of the fact
My My that A, vanishes in both limits, it is evident that it must
(3.12 pass through at least a single maximum at intermediate den-
sity.
Notice that this is also a lattice sum for a Gaussian interac-
tion, but with an extra divisor 4 in the exponent. Formally IV. CUBIC LATTICES, D=3
this is equivalent to the simple Gaussian summed over a
lattice with half the spacing, i.e., with basis vectors To begin the analysis in the three-dimensional context, let
a uniformly strained face-centered cubic lattice be generated
Ki(e)l2, Ksy(e)l2. (3.13 by the following combination of basis-vector integer mul-
tiples:
One easily sees from Eg&.1]) that this latter pair of basis
vectors generates a lattice with number density equal to ri(e)=ny(j)bi(e)+ny(j)bo(e)+ns(j)bs(e), (4.1
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where, as befores measures the strain. The correspondingThe reciprocal lattice basis vectors then follow from Eg.
energy per particle(p, €) can then be expressed in the same(3.10:
manner as was used for the two-dimensional case, Bd3.

and(3.7): Ki(e)=m(2p) " (1+e) tue+(1+e)uy—uy,],
1+2¢(p,£):J' exp(—r2)pM(r,e)dr, (4.2) KZ(S):77(2.0)1/3[(1+8)_1Ux_(1+8)uy+Uz]:
Ka(e)=m(2p)" —(1+&) tu,+(1+e)uy+u,].
pM(rs)= X Slr—nyby(s)—noby(e) ~ N3bs(e)]. (4.19
ni,Np,Ng

(4.3  This latter set generates a body-centered cubic lattice subject
to a volume-preserving uniform strain that contracts along
Also, as befordEq. (3.8)], the periodic singlet density dis- the along thex direction by factor (¥ ¢) %, and expands
tribution p()(p,e) can be written as a Fourier series involv- along they direction by factor ¥ . The same factors of

ing terms from the appropriate reciprocal lattice, course apply to the lattice with basis(s)/2 that are rel-
evant to Eq(4.8), and aside from a direction rotation af2,
(1) _ . k2 this is the same uniform strain applied to the starting face-
p(r.2) pi'inx KES exliK(e)-r=K=(e)/(4a)], centered cubic lattice, Eg&t.9). In view of these facts, both

(4.4 ~ members of Eq(4.8) can be interpreted in terms of the ap-
propriate combination of linear elastic constants, for smaall
K(e)=m;Ki(e)+myKy(e)+maKs(e), (4.5 3 (1) "
P Z[Axxm&p)_)\xxyyp)]
where theK;(e) are determined by the basic E(B.10.

After substituting Eq(4.4) into Eq. (4.2), and carrying out =(p") ANl )~ NP1, (41D
ther integration, the result is the three-dimensional analog of
the prior Eq.(3.12 for the strained triangular lattice: Here the superscriptsand b refer respectively to the face-
centered cubic and body-centered cubic lattices. By applying
an the earlier relatior(2.9) both atp and atp’, individual du-
1+2¢(p,e)=m Pml % m exp{ —[m;Ky(e) +myKy(e) ality relations(with identical forms for each of the two elas-

tic constants in Eq(4.11) can be obtained:
+mgK5(e)]%/4}. (4.6)

_ _ _ PNl p) =~ U D (p)]
The right member of this last equality amounts to a sum of

the simple Gaussian pair interaction over all relative posi- =(p") AN L)~ U (p")], (412
tions in a lattice whose basis vectors &g¢)/2, and whose
number density is just the dual density P_3/2[7\§<fx§/y(P)—1/K(f )(p)]
p'=(mp) ", 4.7 =(p") NP )~ UkP(p)]. (413
Consequently we can write One cubic-symmetry elastic constant remains to be inves-
tigated, namely,,,,. For that purpose, consider the face-
-1 (U ' ST XYXY : .
p Y1+ 2¢(p,e)]=(p') Y 1+24"%p’,e)], s centered cubic lattice at densipy subject to a pure shear

deformation. The following set of basis functions satisfies
that objective, where the only nonzero element of the strain

the three-dimensional version of the former E8.16), now tensor isty, = e/2:

generally involving energies per particle for distinct struc-
tures, the direct and reciprocako lattices.

In order to exploit this last identity for elastic properties,
we shall first examine the constant-volume deformation that

bi(e)=(2p) M (1+e)u,+uyl,

_ ~1

dilates the face-centered cubic lattice in #direction, while by(e)=(2p) L uc+uy], (4.14

contracting it by a compensating amount in thdirection; y

the z direction will remain unstrained. If the number density bs()=(2p) " euy+uy+u,].

of the lattice isp, the corresponding forms assigned to the ] ) )

r-space basis vectors will be These lead to reciprocal-lattice basis vectors:

bi(s)=(2p) V(1 +e)u+(1+e) 1y, Ki(e)=m(2p) " ux+(1—e)uy,—u,],
by(e)=(2p) Y (1+&)ug+u,], (4.9 Ka(e)=m(2p) " u—(1+e)u,+u,],  (4.15

ba(s):(zp)il/:‘{(l'*_s)iluy"'uz]- KS(S):W(Zp)llz[_ux"_(l"’g)uy"'uz],
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corresponding to a body-centered cubic lattice subject to theegime of linear elastic response, the extended duality rela-
pure sheau,,= —&/2. Then as a deduction from the generaltions provide exact connections, for the linear arrdy (
duality relation(4.8), and the definition(2.8) of the elastic =1) and for the triangular latticed=2), between the val-

constant, one finally has ues of elastic constants at dual-density pairs defined by Eq.
3y (f) =3y (b) (1.3) above. ForD =3, the most stable crystal structures at

P My P)= (1) M), 418 jowand at high density respectively, are face-centered cubic,

a result directly analogous to that for the triangular lattice®d body-centered cubic, and it is identities between corre-

shear constant, E¢3.17). sponding linear elastic constants in these reciprocal lattices

At low density,)\(xfyLy depends only on nearest-neighborthat emerge from the analysis. In each of these cases, the

interactions. Owing to this simplification, it is an easy matterlastic constant dualities offer a straightforward way to
to show that evaluate the high-density quantitigaominally involving

particle interactions with many neighboris terms of their
Mxp)~ (Ap~3=Bpexp — 2323 (p—0), low-density partnergdominated by first-neighbor interac-
tions). A direct implication of the dualities is that elastic
A=2% (4.17  constants for pure shear in tBe=2 triangular lattice and the
o D=3 body-centered cubic lattice both tend strongly toward
B=2"" zero with increasing density.
Although the focus of the present study has been the lin-
ear elastic regime, this is not an intrinsic limitation. In prin-
ciple it is possible to recast the development presented above

The elastic-constant duality relatiqd.16) then allows as-
signment of the high-density asymptote:

Ai?/)x;ﬂp')N[A'(P')lolg_ B'(p")®? so as to rela_te no_nlinear homogene_ous deformation energies
s 2 o ) at dual density pairs. In this connection, one can observe that
xexd —2Y%7%(p") %] (p'—=), in three dimensions a continuous uniaxial deformation path

at constant density exists that smoothly transforms the face-
centered-cubic array into the body-centered-cubic form. The
B/ = 273,72 4.18 approach followed above .relates this d(_eformation tq thg

same continuous deformation, traversed in the opposite di-

An exactly analogous calculation can be carried out for théection, at the dual density. This process then links nonlinear

elastic constant differenca{’),— )\g&y in the asymptotic €lastic energies for those lattice pairs. At the midpoint of the

Al = 25/37711/2,

low-density limit: connecting path, there exists a single lattice structure whose
elastic properties at dual low and high densities consequently
Moo P) = Nay(p)~2(Ap~ 3= Bpr¥)exp — 223~ 2% become related.
A key attribute of the Gaussian pair interaction for the
(p—0), (419  derivation of duality relations is that of self-similarity under

Fourier transformation. The single Gaussian is the simplest
example of the wider function class that possesses this at-
tribute. Members of that class can generally be represented in
the form (assuming proper integral convergence

i.e., twice the corresponding result in E@.17. Duality
relation (4.11) then leads in turn to the high-density asymp-
tote:

)\;?()XX(P,)_)\;E)())/)KP,)"‘Z[A,(P/):LOB_B/(p’)s/e]
_olI3_2, 1\2/3 o0
xex{ — 2% ') o
(p'—). (4.20

These results(4.18 and (4.20 indicate that the body-
centered cubic array for the Gaussian core model manifes
extraordinary weakness toward shear strain in the highngon
density regime, analogous to that revealed earlier for the
two-dimensional triangular lattice.

w(a)exp — ar?)da, (5.1

provided that the weight functiow(a) satisfies the condi-

a Yw(a Y =Aw(Ba), (5.2
V. DISCUSSION

The principal objective of the present paper has been tavhereA andB are positive constants. Some members of this
examine a generalization of a previously-derived duality reclass will display relatively simple crystal forms at absolute
lation for the classical Gaussian core model. Specifically, thizero, and will qualify for study by means of an appropriately
generalization considers uniformly strained versions of thegeneralized duality analysis. This is a direction for extension
zero-temperature crystals for this model in one, two, andf the present work that should be profitable to follow in the
three dimensions, and thus concerns elastic properties. In threear future.
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Elastic constants determine the long-wavelength portionsvavelength transverse phonons. A full description of Gauss-
of phonon spectra. The unusual dropoff of the two- andian core model phonon spectra is beyond the scope of the
three-dimensional shear constants with increasing densitgresent study, but will be examined in detail in a forthcoming
discussed above implies a remarkable slowdown of longpublication[11].
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